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. In a magic square, the sum of the three entries in any row,
column, or diagonal is the same value. The figure shows four 1
of the entries of a magic square. Find z.

. For each real number z, let |z} denote the greatest integer that does not exceed z. For
how many positive integers n is it true that n < 1000 and that |log, n] is a positive
even integer?

. Find the smallest positive integer n for which the expansion of (zy — 3z + 7y — 21)*,
after like terms have been collected, has at least 1996 terms.

A wooden cube, whose edges are one centimeter long, rests on a horizontal surface.
Illuminated by a point source of light that is z centimeters directly above an upper
vertex, the cube casts a shadow on the horizontal surface. The area of the shadow,
which does not include the arca beneath the cube, is 48 square centimeters. Find the
greatest integer that does not exceed 1000z,

. Suppose that the roots of 3* + 3x? + 42 — 11 = 0 are a, b, and ¢, and that the roots
of 4+ ra? 4 sz +t=0area+b b+c and c+a. Findt.

. In a five-team tournament, cach team plays one game with every other team. Each
team has a 50% chance of winning any game it plays. (There are no ties.) Let m/n
be the probability that the tournament will produce neither an undefeated team nor
a winless team, where m and n are relatively prime positive integers. Find m 4+ n.

. Two of the squares of a 7 x 7 checkerboard are painted yellow, and the rest are
painted green. Two color schemes are equivalent if one can be obtained from the
other by applying a rotation in the plane of the board. How many inequivalent color
schemes are possible?

. The harmonic mean of two positive numbers is the reciprocal of the arithmetic mean
of their reciprocals. For how many ordered pairs of positive integers (z,y) withz < y
is the harmonic mean of # and y equal to 6207

10. Find the smallest positive integer solution to tan 19z° =
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9. A bored student walks down a hall that contains a row of closed lockers, numbered
1 to 1024. He opens the locker numbered 1, and then alternates between skipping
and opening each closed locker thercafter. When he reaches the end of the hall, the
student turns around and starts back. He opens the first closed locker he encounters,
and then alternates between skipping and opening each closed locker thereafter. The
student continues wandering back and forth in this manner until every locker is open.
What is the number of the last locker he opens?

cos 96° + sin 96°
cos 96° — sin 96°°

11. Let P be the product of those roots of 28 + z* + 2% + 2% + 1 = 0 that have positive

imaginary part, and suppose that P = r{(cos 8°+isin 6°), where 0 < r and 0 < 6 < 360.
Find 6.

12. For each permutation ay, a3, 4as,...,ayo of the integers 1,2,3,...,10, form the sum

las ~ a2} + |as — aq| + las — ag| + |az — as| + ag — a0l

The average value of all such sums can be written in the form p/g, where p and g are
relatively prime positive integers. Find p+¢.

13. In triangle ABC, AB = /30, AC = /6, and BC = V15. There is a point D for

which AD bisects BC and ZADB is a right angle. The ratio

Area(AADB)
Area(AABC)
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Find m +n. -

14. A 150 x 324 x 375 rectangular solid is made by gluing together 1 x 1 x 1 cubes. An

internal diagonal of this solid passes through the interiors of how many of the 1 x 1 x 1
cubes?

15. In parallelogram ABCD, let O be the intersection of diagonals AC and BD. Angles

CAB and DBC are each twice as large as angle DBA, and angle ACB is r times as
large as angle AOB. Find the greatest integer that does not exceed 1000r.
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1. (Answer: 200)

The sum of the entries in the first row, which is £+115, equals the sum of the entries
in the first column, hence the lower-left entry is 114. Because the sum of the entries in
the diagonal that includes the upper-right corner is z + 115, the central entry must be
z — 95. Because the sum of the entries in the second row is 2 + 115, the last entry in
that row must be 209. Because the sum of the entries in the third column is z + 115,
the last entry in that column must be z — 190. This puts z, z — 95, and £ — 190 on a
diagonal. It follows that

z + (z — 95) + (z — 190) = = + 115,

hence z = 200.

2. (Answer: 340)

£
Because

llogy n} = k <= 2F < n < 2F+
in order for the integer k to be positive and even,
n € {4,5,6,7,16,17,...,31,64,65,...,127,256,257,...,511},

N’
4 16 84 256

so there are 4 + 16 + 64 + 256 = 340 possible choices for n.

3. (Answer: 044)
Notice that
(zy -3z +Ty—-21)" = (2 + 7)"(y ~ 3)".

The simplified expansions of (z + 7)" and (y — 3)" have n + 1 terms each. When
these two expansions are multiplied together, (n + 1)? terms of the form cziy* are
produced. No two of these terms are like terms because they differ in at least one
exponent. Hence the expansion of (zy — 3y + Ty — 21)™ has (n + 1) terms. To make
(n + 1)® > 1996, we need n > /1996 — 1. The smallest such integer n is 44.
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. (Answer: 166)

Let ABCDEFGH be the cube, P be the
point source of light, PE =z, and EA=1.
In the diagram at right, P, E, and A are
collinear, and @, R, and § are the intersec-
tions of the extensions of PF, PG, and PH,
respectively, with the plane of ABCD. Be-
cause the squares EFGH and ABCD are
in parallel planes, it follows that pyramids
PEFGH and PAQRS are similar. There-
fore AQRS is a square, and

AQ AP
EF ~ EP’
. . . z+1
Solve this equation to obtain AQ = P

The area of the shadow is 48, hence *

2
Aatv —1=48.
k4

Thus z = 1/6 and 1000z = Smw.

. (Answer: 023)

The first equation implies that @ + b + ¢ = —3. The second equation implies that
t = —(a+ b)(b + c)(c + a). It follows that t = —(—3 — ¢)(—3 — a)(—3 — b), which
expands to ¢ = 27+ 9(a + b+ ¢) + 3(ab + bc + ca) + abe. The first equation implies
that ab+ bc + ca = 4 and abc = 11, hence that ¢ = 27— 27+ 12+ 11 = 23.

OR

The first equation implies that a + b+ ¢ = —3. It follows that the roots of the second
equation are —3 — ¢, —3 — 4, and —3 — 4. These are also the roots of the equation
(—2~38)® +3(—z~3)® +4(—z —3) — 11 = 0, obtained by replacing z by —z — 3 in the
first equation. The leading coefficient of this equation is —1 and the constant term is
(~38)® +3(—3)% + 4(—3) — 11 = ~23; thus ¢ = 23.
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6. (Answer: 049)

The five teams must play a total of 5-4/2 = 10 games, so there are 2'° = 1024 possible
outcomes for the tournament. Team A wins all four of its games in 21°7* = 64 of
these outcomes. Because at most one team can be undefeated, there are 5 - 64 = 320
tournaments that produce an undefeated team. A similar argument shows that 320
of the 1024 possible tournaments produce a winless team. These possibilities are not
mutually exclusive, however. In 219~7 = 8 of the tournaments, team A is undefeated
and team B is winless, and there are 5 -4 = 20 such two-team permutations. In
other words, 8 - 20 = 160 of the 1024 tournaments have both an undefeated team
and a winless team. Thus, according to the inclusion-exclusion principle, there are
1024 - 320 — 320 + 160 = 544 tournament outcomes in which there is neither an
undefeated nor a winless team., All outcomes are equally likely, hence the required
probability is 544/1024 = 17/32, and 17 + 32 = 49.

7. (Answer: 300)
There are A;%v = 1176 ways to select the positions of the yellow squares. Because
quarter-turns can be applied to the board, however, there are fewer than 1176 in-
equivalent color schemes. Color schemes in which the two yellow squares are not dia-
metrically opposed appear in four equivalent forms. Color schemes in which the two
yellow squares are diametrically opposed appear in two equivalent forms, and there
are (49 — 1)/2 = 24 such pairs of yellow squares. Thus the number of inequivalent

h ,
color schemes is 7624 24
i + 2 = 300.

8. {Answer: 799)
Let n = 629, Suppose that z and y are positive integers for which

1 2
PRSI SE—— ]

G
2\z ¥y
n n

It follows that zy — ETRY= 0, hence that

DT e

Because 2383%0 has 39 - 41 = 1599 positive divisors, there are 1528 = 799 pairs of

unequal positive integers whose product is 23831°, and therefore 799 ordered pairs
(z,y) of the required type.
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9. (Answer: 342)

Suppose that there are 2¥ lockers in the row, and let Ly be the number of the last locker
opened, once all the lockers are open. After the student makes his first pass along the
row, there are 251 closed lockers left. These closed lockers all have even numbers and
are in descending order from where the student is standing. Now renumber the closed
lockers from 1 to 2!, starting from the end where the student is standing. Notice
that the locker originally numbered n (where n is even) is now numbered 25— +1—n/2.
Thus, because L;_; is the number of the last locker opened with this new numbering,
we have

Liy=214+1- 5

Solving for Li we find .
Ly =2"+2-2L; ;.

Iterate this recursion once to obtain
Li=2F42_-2(2" 4220 5)=4L; 2 -2 1)
When there are 1024 = 2'° lockers to start with, the last locker to be opened is
numbered Lyo. Apply (1) repeatedly to Ly = 1 to find that Ly = 4Lo—2=2, Ly =6,
N\a = NNQ hm = mm, and Haa = 342.
OR

Follow the given solution to the recursion (1), which can be written in the form

2 2
NQIWH%AHSI»IWV.

Because Ly = 1 and L; = 2, it follows that

2 3

N:nlll
u ? | mv E-:;,ximo&‘

AH - mv FLEN if k is even,

These formulas may be combined to yield

hw" W AA:IS\E + wv

for all nonnegative k. In particular, Ljp = 342.

Query: How would the solution change if there were 1000 lockers in the hall?
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10. (Answer: 159)

The identity

cos A+sinA_l+4+tan A tan45°+tan 4
cos A—sin A 1-tan A 1—tan 45°tan A

= tan(45° + A)

implies that the given equation is equivalent to tan 19z° = tan(45°+96°) = tan 141°.
It follows that 192 must differ from 141 by a multiple of 180; that is,

19z = 141 + 180y = 19(7 + 9y) + (8 + 9y),

for some integer y. The smallest positive z corresponds to the smallest nonnegative y
v z—8
Lo .. . 9.’
from which it follows that the minimum value for z is 8. Hence y = 16 and z = 159.

for which 8+ 9y = 19z for some v.um,:?m integer z. Solve for y to obtain y = 22+

OR

Because sin 96° = cos 6°, the given equation is equivalent to

cos 96° + cos 6°

tan 192° = —————— .
20 192 cos 96° — cos 6°

The identities
cos(A + B)+ cos(A — B) = 2cos Acos B
and
cos(A + B) — cos(A — B) = —2sin Asin B
imply that
cos 96° + cos 6°  2cos 51° cos 45° sin 39°

cos 96° — cos 6°  —2sin 51°sin 45°  cos 39°

It follows that the given equation is equivalent to
tan 192° = —tan 39° = tan 141°.

The solution continues as above.

OR
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Notice that Acos = + Bsin z is equivalent to C cos(z — ¢), where C? = A? + B?,
A =Ccos ¢, and B = Csin ¢. Hence the given equation is equivalent to

o0 _ Axo ° i °
I)\mSmAwa »wvl cos 51 HmEEL — tan 141°.

tan 1927 = VZcos(96° +45°)  cos 141°  cos 141°

The solution continues as before.

. (Answer: 276)

Divide both sides of the given equation by z3, which gives 2% +z4+14+27 14273 =0.
This takes the form w® — 2w + 1 = 0, where w = 2+ z~1. Factor the cubic polynomial
to obtain (w — 1)(w? +w —1) = 0. Now replace w.by z + z~! and multiply both sides
of the equation by z3. This yields

2+1 PB-1
z4+1 z-1"

0=(F-z+1)(*+2+22+2+41)=

It follows that the six values for z are the fifth roots of 1 and the cube roots of
—1, with the exception of 1 and —1. These roots may be written in polar form
cos ¢° + i sin ¢°, where ¢ takes on the following values: 72, 144, 216, 288, 60, 300. The
roots with positive imaginary part have ¢-values 72, 144, and 60. The product of
these roots is cos#° + isin 6°, where 8 = 72 + 144 + 60 = 276.

Note: This solution illustrates a general method for solving symmetric equations
of degree 2n, by reducing them to equations of degree n. In this example, it is
even possible to find non-trigonometric formulas for the roots, by repeated use of the
quadratic formula. In particular, the roots of w? + w ~1 =0 are w = WAIH + v/5),

and the four z-values from the ensuing equation z + z~! = w are fifth roots of 1.

They are 2 = 4 (~1-vB+iVi0-25) and 2 = } (14 VB+ivi0+2V5).

These formulas for fifth roots imply the ruler-and-compass constructibility of a regular
pentagon.

OR

Observe that

AR |

I

Lt (PS4 41)

5
-1
=S -1+ 2
z(z v+NIH
2
5 zf—z+1
=(f-nE 2T
F-)—
leIH 241
T z-1 z41°

The solution continues as above.
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(Answer: 058)

Consider the average of all sums of the form
la1 — az| + lag — ag| + -+ - + lan—1 — aal,

where n is even and (a1, a2, as, ..., 6x) is a permutation of (1,2,3,...,n). Each of the
n! sums contains n/2 differences of pairs of integers. There are () such pairs. For
each k=1,2,...,n — 1, there are n — k of these (3) pairs with difference k. Because
each of these pairs occurs the same number of times in the n! sums, the average of

the differences of all .ma_ Ppairs is

=
a m k(n — k).

Because k(n — k) is the number of subsets {a, % + 1,5} of {1,2,...,n + 1} that have
a <k+1<b, it follows that

M»?:@nqwf&.

A...Zv n+1
The average difference is therefore Aw.v ==3
2

is %. which equals 55/3 when n = 10. Thus p + ¢ = 58.

n-1
Note: When n = 10, it is easy to calculate the value of MU k(n — k) directly.

k=1

OR

The average is just 5 times the average value of |a; — a2|, because the average value
of |agi—y — ag;| is the same for i = 1,2,3,4,5. When a; = k, the average value of
lay — as| is
(k-1 +(k—-2)+---+1+1+24---+ (10— k)
9
1[k(k—1) (10 —-k)(11—k) k2 — 11k +55
=3 — 7t _ = TR

Thus the average value of the sum is

wﬂlu:o+mm 55
HoM N

k=1

and so p+¢ = 58.
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13. (Answer: 065)

Let AB = ¢, AC = b, BC = a, and notice that a? 4+ b* < c?. Tt follows that £C is
obtuse and that D lies outside AABC. It is given that line AD intersects BC at E,
the midpoint of BC. Notice that BD is the altitude from B in AABE. Thus

Area(AADB)  Area(AADB)

__3(BD)(4D) AD
Area(AABC) ~ 2Area(AABE)

I(BD)(AE)  24E &

To find AE, apply the Law of Cosines twice to obtain
2 amy? 4 (&) - a
—(AEY + Fv 2(AE) Cv cos LCEA
and '
2 _ 2 ay? il
= (AEY + va 2(4E) ( Nv cos LAEB.

Now add these two equations, using the fact that cos ZCEA + cos ZAEB = 0, and
solve for AE. The result is

AE = w»\wvw +2¢2 — a2,

2
Apply the Pythagorean Theorem to find
that
(AD)® + (BD)® = ¢* ¢
D
and E
DE)? + (BD)? = 1a2.
(DE)® +(BD)? = § A B
Substitute AD = AE + ED E& subtract
to find (AE)? + 2(AE)(ED) = ¢* — }a’.
Thus
ED - ja® —(4AE) -t
2AE ~ 4(AE) T 2(2802 + 262 — a?)’
Return to (1) to find that
Area(AADB) AE+ED 1 ED
Area(AABC) = 2AE 2 24AE’
4 27
When a = /15, b = /6, and ¢ = /30, the desired ratio of areas is = + %= %

Hence m +n = 65.
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14. (Answer: 768)

Let the rectangular solid have width w, length I, and height h, where w, I, and h are
positive integers. We will show that the diagonal passes through the interiors of

w14+ kh — ged(w, 1) — ged(l, b)Y — ged(h, w) + ged(w, 1, )

of the 1 x 1 x 1 cubes.

Orient the solid in 3-space so that one vertex is at O = (0,0,0) and another is at
A = (w,1,h). Then DA is a diagonal of the solid. Let P = (z,y, z) be a point on this
diagonal. Exactly one of z,y,2 is an integer if and only if P is interior to a face of
one of the small cubes. Exactly two of z,y,2 are integers if and only if P is interior
to an edge of one of the small cubes. All three of z,y, z are integers if and only if P
is a vertex of one of the small cubes. As P moves along the diagonal from O to A,
it leaves the interior of a small cube precisely when at least one of the coordinates of
P is a positive integer. Thus the number of interiors of small cubes through which
the diagonal passes is equal to the number of points on the diagonal with at least one
positive integer coordinate. Points with positive coordinates on the diagonal O A have
the form
P = (wt,lt, ht) with 0 <t < 1.

The first coordinate, wt, will be a positive integer for w values of t, namely for the
values t = 1/w,2/w,8/w,...,w/w. The second coordinate will be an integer for
values of ¢, and the third coordinate will be an integer for & values of t. The sum
w =14k doubly counts the points with two integer coordinates, however, and it triply
counts the points with three integer coordinates. The first two coordinates will be
positive integers precisely when ¢ has the form k/ged(w, ), for some positive integer
k between 1 and ged(w, 1), inclusive. A similar argument shows that the second and
third coordinates will be positive integers for ged(l, k) values of ¢, the third and first
coordinates will be positive integers for ged(h,w) values of ¢, and all three will be
positive integers for ged(w, 1, ) values of £. By the inclusion-exclusion principle, P
will have one or more positive integer coordinates

w+ 1+ h — ged(w,l) — ged(!, k) — ged(h, w) + ged(w, 1, k)

times, which gives 768 when {w,!, h} = {150,324, 375}.
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15. (Answer: 777)

The given data allows us to label 2 = 0A = OC, y = OB, B
6 = LOBA, and 20 = LOAB = LOBC. Because angles CBO
and CAB are congruent, triangles BCO and ACB are similar.
Thus

CB CO OB

Ci~CB”Ba’ <

or
CB_ =z _y
2z~ CB  BA’
It follows that CB = zv/2, and that BA = yv/2.
Now let P be the intersection of OB with the bi-
sector of ZOAB. Because angles OAP and OBA
are congruent, triangles OP A and OAB are sim-

ilar. Thus
AP _o04_op
BA OB 04~
The first equation yields AP = z+/3. Because
AP = PB, the second equation yields
1) y* -2 =ayV2.

Apply the Law of Cosines to triangle COB D
to find that

2 +y’~(aV2) _yt-a?
2y T 2azy

which is v/2/2, by equation (1). In other words, 36 = 45°, so § = 15°. It follows that
LACB = 105° and ZAQB = 135°, so r = 105/135 = 7/9 = 0.7 and 1000r = 777.7.

cos 30 =

OR
Apply the Law of Sines to triangles BOC and ABC to find that

OC' sin 30 AC sin 20
Be= sin 28 and BC = sin 3 '

respectively. Because 2. OC = AC, it follows that sin® 30 = 2sin?26. Now use
the identities sin 20 = 2sin §cos 8 and sin 3¢ = sin §(4cos? 9 — 1) to produce the
equation (4cos?8 — 1) = 8cos? 4, then use the identity 2cos?d = 1 + cos 20 to
reduce it to (1 + 2cos 20)* = 4 + 4.cos 20. This is equivalent to 4 cos? 26 = 3, hence
cos 260 = umwz\w Because it is clear that 26 is acute, only § = 15° is a possibility.
Thus r = 105/135 = 7/9 and 1000+ = 777.7.




